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The Banach—Tarski Paradox

The most famous example of a paradoxical decomposition:

Let B be the closed unit ball in three dimensions:
B={(x,y,z) eR®: x2+y?> + 22 <1}.
We can split B into a finite number of disjoint pieces and move

them around using Euclidean motions (combinations of rotations
and translations) to obtain two copies of B.



The Banach—Tarski Paradox

More formally: there exist sets B; C B and Euclidean motions T;,

i=1,...,m,...,m++ nsuch that:
» B;N Bj = @ whenever i # j
>

m-+n

UB=8

i=1

>
m m—+n
UTiB)=8 and | ] Ti(B)=8B
i=1 i=m+1

Letting £(3) denote the group of three-dimensional Euclidean
motions, say that B is E(3)-paradoxical.



A nice book

Leonard M. Wapner, The Pea and the Sun: A Mathematical
Paradox, A. K. Peters/CRC Press, 2005.



The Pea and the Sun?

Another version of the Banach—Tarski Paradox says that a very
small ball in R3, say the size of a pea, may be split into a finite
number of disjoint pieces, which can be moved by Euclidean
motions to give a very large ball, say the size of the sun.



The Universal Dictionary

(From lan Stewart, From Here to Infinity, OUP, 1996, via Louis
Wapner, The Tea and the Sun. Stewart calls it the Hyperwebster.)

It is the future. The Universal Publishing Company has decided to
publish a dictionary that contains all possible words that can be
formed from the letters a, b, ..., z. There will be 26 volumes,
arranged so that volume a contains all words starting with a, etc.

But just as they are getting ready to publish, the accountants
report some financial problems. Looking for a way to cut costs,
they decide they can omit the first letter from each word, as it
already appears in the volume title.

Carrying out this procedure, they find that all the volumes now
have the same content and that each has the same content as the
original dictionary!



Objection!

There is an obvious objection to the Banach—Tarski Paradox. The
volume of sets in R3 is invariant under Euclidean motions.
Furthermore, the volume of a disjoint union of sets is the sum of
the volumes. So why don't we get the following contradiction?

m-+n m-+n

Vol(B) = > Vol(B;) = ) _ Vol(Ti(B;)) = Vol(B) + Vol(B)
i=1 i=1

The problem is that assigning size to sets is more complicated than
it seems ...



Finitely Additive Measures

To use technical language, a finitely additive measure on a
collection A of subsets of a set X is a function
m: A — R>qU {400} such that

> m(@)=0;
> if A1,..., Ay are pairwise disjoint sets in A then

m(A1U---UAk) = m(A1)+'-‘+m(Ak).



Tarski's Theorem

Tarski showed the the Banach—Tarski Paradox is equivalent to the
following statement:

There is no finitely additive measure m defined on all the subsets
of R3 which is E(3)-invariant and which has m(B) = 1.

(In particular, volume does not give a finitely additive measure
defined on all subsets of R3.)



Groups

On an earlier slide we used the term group of Euclidean motions.
Groups turn out to be very important in this story, so let’s define
them.

A group is a set G together with an operation - that allows us to
“multiply” two elements, with the following properties:

> if g1,82 € G then gy - & € G;
> for all g1.42,83 € G, we have g1 - (g2 - g3) = (g1 - &) - &3;

» G contains an identity element e such thate- g =g e =g,
for all g € G;

» every g € G has an inverse element g~! € G such that

g-gt=gtg=e



Examples

1. The real numbers R with addition (so - becomes +), the
integers Z with addition. In each case, zero is the identity
element. (But note that the real numbers under multiplication
do not form a group because 0 does not have an inverse.)

2. R" and Z" with vector addition.

3. SO(3), the group of rotations around the origin in R (with
the operation of composition).

4. E(3), the group on Euclidean motions of R3 (with the
operation of composition). (Note that SO(3) is a subgroup of

E(3).)



Rotations as matrices

The elements of SO(3) may be represented by 3 x 3 matrices

ail are az
A= laxn ax» ax
a31 432 ass

such that AAT =/ and det A =1, where AT is the transpose
matrix and / is the 3 x 3 identity matrix:

ai1 a1 a3 1 00
AT = di2 a2 as2 and [ = 010
a3 ax as 0 01

Here, the operation is matrix multiplication and / is the identity
element.



Generators and relations

Another way to describe a group is by giving a set of generators
and the relations they satisfy.

For example
(RRT|RP=e, T?=¢)

is the group of symmetries of an equilateral triangle. (Here, R is a
rotation through 27v/3 radians and T is a reflection in the
perpendicular from a vertex to the opposite side.)

Note that we don't write the relations RR™! = R~!R = e and

TT 1=T1T=¢ explicitly — they are always understood to
hold.



Cayley graph for Z




Cayley graph for Z?

(0,1)

(0,0)

(1,0)




Free groups

Here is another group specified by generators and relations. It will
be very important for the rest of the talk.

This group is called F,. It will have two generators a and b. (Just
think of them as abstract symbols.) The elements of F, are the
identity e and all finite reduced words in a, b and their inverses
a1, b1, where a reduced word is a finite string of these four
elements subject only to the restriction that we cannot follow
something by its inverse.

Here are some reduced words (where we use the shorthand

a® = aa, etc.):

ab, ab’a~!, bab~la’b?2a71



Free groups

We still need an operation to make F; into a group.

For reduced words wy and ws, we define wy - ws to be the
concatenation of wy and w, with cancellation of adjacent inverses.

Examples:
a-b=ab

aba 1. b3a? = aba 1h32?
bab ta’b?a~!. ab’a~! = bab la’b*a!

Of course, we also define e- w = w - e = w always. (We can think
of e as the “empty word".)



Cayley graph for F;




Free groups

We call F, the free group on 2 generators. (“Free” because there
are no relations between the generators.)

As we've defined the elements of F, are just abstract symbols but
we can realise as a group of matrices (in many ways).

Take two distinct axes in R3 and let a and 3 be irrational numbers.
Let a be a rotation be angle 2o around the first axis and let b be
a rotation by angle 275 around the second axis. Then the group
generated by a and b is a copy of the free group on 2 generators.

Example:
/2 V3/2 0 1 0 0
a=|-v3/2 1/2 0] and b=|0 1/2 /3)2
0 0 1 0 —V/3/2 1)2



Paradoxical decompositions again

Let us return to the Banach—Tarski Paradox but consider a more
general situation.

Let X be a set and let G be a group action on X. We say that
E C X is G-paradoxical if there exist pairwise disjoint sets E; C E
and g; € G,i=1,...,m,...,m++ n such that

>

m-+n

|JE=E
i=1

m+n

U gi(Ei) =E and U gi(E)) = E.
i=1

i=m+1



von Neumann and amenability

A general version of Tarski's result says that E is not
G-paradoxical if and only if there is a G-invariant finitely additive
measure defined on all the subsets of X such that m(E) = 1.

von Neumann realised that this was essentially a property of the
group G. Notice that G acts on itself by left multiplication.

Theorem (von Neumann, 1929)

A sufficient condition for there to be a a G-invariant finitely
additive measure on X such that m(E) = 1 is that there is a
left-invariant finitely additive measure p defined on all the subsets
of G with u(G) = 1.

We call groups with this property amenable.



Amenable groups
Clearly finite groups are amenable (just use normalised counting
measure). But are there infinite amenable groups?

Yes, but seeing this requires some rather sophisticated
mathematics. For example, Z is amenable.

Why? Define a sequence of measures 1, on subsets of Z by

1 (A) = #(Aﬁz{n_j’i“’n})-

Then

n(A+1) — pun(A)| < .
A+ 1) = n(A)] < 5=~

Then take a limit along a non-principal ultrafilter to get an
invariant measure.



Ultrafilters?

See Terry Tao's excellent blog post:

Ultrafilters, nonstandard analysis, and epsilon management



Fglner's criterion

A similar argument works for Z9, for any d > 1.

More generally a (countable) group G is amenable if (and only if)
for every finite set A C G and every € > 0, there exists a finite set
K C G such that

#(KNa-K)
#K

This is called Fglner’s criterion (1950s).

1—¢ forallac A

Also note that any subgroup of an amenable group is amenable.



F> is not amenable

What about groups which are not amenable? Well, F; is not
amenable.

We can prove this by contradiction.



F> is not amenable

What about groups which are not amenable? Well, F; is not
amenable.

We can prove this by contradiction. Suppose that w is an

Fo-invariant finitely additive measure defined on all the subsets of
Fo.

For the generator a, let W(a) be the set of reduced words that
start with an a. Similarly, W(a~1), W(b) and W(b™1).
We have the following disjoint unions:
Fo={e}UW()UW(EHu W) uWw(b?)
= W(a)uaW(a™)
= W(b)UbW(b™1).



F> is not amenable

Hence

p(F2) = u({e}) + p(W(a)) + w(W(a™t)) + u(W(b)) + u(W(b 1))
= (W(a)) + p(aW(a™ 1))
= (W(b)) + u(bW (b))

Using invariance and the fact that u(Fp) = 1, we obtain

1= p({e}) + p(W(a)) + p(W(a™)) + (W(b)) + p(W(b™))
= p(W(a)) +u(W(a™"))

p(W(a)) + p(W(a*
p(W(b)) + p(W(b™1)),

giving a contradiction.



Application to Banach—Tarski

We've seen that F, can be realised as a subgroup of SO(3). Hence
SO(3) is not amenable and therefore E(3) is not amenable. This

explains why we can have the Banach—Tarski Paradox in dimension
3.

In contrast, E(2), the group of Euclidean motions of R?, is
amenable and there is no 2-dimensional version of Banach—Tarski.



Random walks on Z

Now let us think about some probability theory.

Start at 0 € Z. Move +1 with probability 1/2 and —1 with
probability 1/2. We call this process a random walk. We'll denote
our position after n steps by S,.

What is the probability that we return to O after n steps, i.e. that
S5, =07

First we note that we can only return in an even number of steps,
so we are interested in Prob(S,, = 0).

We can easily see that

1 1
I3"0[:)(52n = 0) = ﬁ <2n> = ﬁ7 as n — oQ.



Cayley graph for Z




Random walks on Z¢

We can generalise the above to higher dimensions.

We can define a random walk on Z9 as follows. For i =1,...,d,
write e; for the vector with 1 in the ith position and Os elsewhere
(e.g. e1 =(1,0,...,0)).

Choose probabilities p1, ..., pd, p—1,..., P—g > 0 such that
pr+--+pstp1t+--+pg=1
and p; = p_;.

Start at 0 € Z9. Then jump by e; with probability p; and —e; with
probability p_;.



Cayley graph for Z?

(0,1)

(0,0)

(1,0)




Random walks on Z¢

As before, S, denotes the position reached after n jumps, and
Sn = 0 implies that n is even.

We have 1
Prob(S2, =0) < ——, as n— oc.
n

Notice that Prob(S;, = 0) decays more quickly as d increases but
only at a polynomial rate.



Random walks of free groups

Let us consider a random walk on the free group F». Remember
that this has generators a, b and their inverses a= 1, b1

Choose probabilities p,, pp, p,-1, pp-1 > 0 such that
Pa+ P+ Pyt + pp1 =1

and ps = p,-1, Pp = Pp-1.

Start at the identity e and jump by s € {a, b,a~ 1, b~1} with
probability ps.

The simplest case is p, = pp = p,-1 = pp—1 = 1/4.



Cayley graph for F;




Random walks of free groups

In this situation, it is much harder to return to the identity.

In the simplest case where all jump probabilities are 1/4, a not so
simple calculation gives that

2n
1 242
Prob(Sz, =€) < 32 ({) , as n— oo.

In particular,

22
\{zo.94<1,

so Prob(S,, = e) decays exponentially fast, as n — co.



Random walks of free groups

For more general probabilities p = (pa, pp, Po-1, Pp-1), We have

1

Prob(Sz, =€) < m/\(p)z”

, as n— oo,

for some 0 < A(p) < 1, so we still have exponential decay.



More general set-up

Let G be a countable group with a finite set of generators 5. To
simplify notation, we assume that S contains all its inverses, i.e.
seSifandonlyifs™1 €8S.

Choose probabilities ps > 0, s € S, such that

Zps:]-

seS
and ps = ps-1. Let p = (Ps)sES-

Then define a random walk on G by staring at the identity and
jumping by s € S with probability ps.



Exponential decay

Question: When does Prob(S, = e) decay exponentially fast?
Set
(G, p) := limsup Prob(S, = e)*/" < 1.

n—oo

Theorem (Kesten, 1958)
For a symmetric random walk on a group G as above,

AG,p) <1

if and only if G is not amenable.



Non-symmetric random walks?

Without symmetry (ps = p,-1), Kesten's theorem is false.

Even for random walks on Z, we get A < 1 if there is a preference
for some direction.

Example: p1 =3/2, p_1 =1/3.



Non-symmetric random walks?

However, there is a natural replacement of Kesten's result. This
requires the notion of the abelianization of a group.

Recall that a group is abelian if it is commutative (i.e. g-h=h-g
always).

The abelianization G2 of a group G is the group obtained from G
by adding the relations g - h = h - g for every pair of elements
g,hegG.

Alternatively, G° is the largest abelian quotient group of G, i.e.
the largest abelian group for which there exists a surjective
homomorphism ¢ : G — G2P.



Abelianization

If G is finitely generated then G2 is isomorphic to
ZK x A,

with k > 0 and A a finite abelian group.

Example: F3P =72,

A random walk p = (ps)ses on G gives a random walk
P = (P,)sex on G2 by the formula

Z Ps,

o(s)=c

where ¥ = ¢(S).



A non-symmetric Kesten criterion

The next theorem is joint work with Rhiannon Dougall (Durham
University).

We first note that we always have A(G,p) < A\(G?®,p).
Theorem (Dougall and Sharp, 2024)

For a random walk on a group G as above,

MG, p) < NG, P)

if and only if G is not amenable.
Furthermore, \(G?°,p) = 1 if and only if for every homomorphism
x : G 5 R we have

> Pox(o) =0.

oEL



Thank you for listening!



